Monetary Union with Voluntary Participation*

William Fuchs Francesco Lippi
Stanford University† Bank of Italy and CEPR‡

14 April 2005

Abstract

A Monetary Union is modeled as a technology that makes a surprise policy deviation impossible and requires voluntarily participating countries to follow the same monetary policy. Within a fully dynamic context, we identify conditions under which such arrangement may dominate a coordinated system with independent national currencies. Two new results are delivered by the voluntary participation assumption. First, optimal policy is shown to respond to the agents’ incentives to leave the union by tilting both current and future policy in their favor. This yields a non-linear rule according to which each country’s weight in policy decisions is time-varying and depends on the incentives to abandon the union. Second we show that there might conditions such that a break-up of the union, as occurred in some historical episodes, is efficient. The paper thus provides a first formal analysis of the incentives behind the formation, sustainability and disruption of a Monetary Union.

JEL Classification Numbers: C7, E5,F33
Key Words: monetary union, cross-country spillovers, limited commitment.

*We are grateful to the Editor and two anonymous referees for insightful and constructive criticisms. We also thank Simon Board, Peter DeMarzo, Narayana Kocherlakota, Paul Romer, Tom Sargent, Andy Skrzypacz and seminar participants at Stanford, New York University, UCLA, the Bank of Italy, the European Central Bank and the Institute for International Economics (Stockholm) for helpful comments and suggestions. The views are personal and do not involve the institutions with which we are affiliated. William Fuchs gratefully acknowledges support from the B.F Haley and E.S Shaw Fund at Stanford University and the Mariscal the Ayacucho Fellowship.

†Graduate School of Business, CA 94305, USA. wfuchs@stanford.edu
‡Research Department, Banca d’Italia, via Nazionale 91, 00184 Rome, Italy. E-mail: francesco.lippi@bancaditalia.it
1. Introduction

International macroeconomic interdependence raises the possibility, first formalized in the seminal work of Hamada (1974, 1976), that non-cooperative decisions by the policy makers of different countries produce inefficient outcomes. A large body of literature has used this insight to analyze international institutions and policy cooperation.¹

In the field of monetary economics the idea has provided a rationale for monetary unions (MU), an institutional arrangement in which countries relinquish autonomous control over national currencies to adopt a common one. Economic history offers several instances of countries that have deliberately given up monetary independence, jointly or unilaterally, to follow a common policy (Cohen, 1993). The European monetary union is the best known recent example, but the establishment of an MU is also being examined by the six states of the Gulf Cooperation Council, nine nations in South East Asia and a large group of African countries.² As argued by Persson and Tabellini (2000, Chapter 18), this phenomenon can be rationalized as a second-best institution-design problem when the cooperative first-best policy is not feasible. In this context, the MU may allow policy makers to alleviate the coordination problem at the expense of a reduced ability to stabilize idiosyncratic shocks.

The trade-off between coordination versus flexibility that emerges in the choice of the monetary regime has proved fruitful for the analysis of fixed exchange rate arrangements and monetary unions, e.g. Alesina and Grilli (1992), Canzoneri and Henderson (1991) and Persson and Tabellini (1995). These papers provide a useful foundation to understand the incentives to form a monetary union, but they suffer from two limitations that this paper tries to overcome.

First, the benefits of the MU are usually discussed in comparison to the welfare achievable under the repetition of the static Nash equilibrium, given the premise

¹For an encompassing survey of applications in the field of fiscal and monetary policy during the last two decades see Persson and Tabellini (1995). Canzoneri and Henderson (1991) use similar ideas to study international monetary arrangements.
that the first-best coordination of policy is “not feasible”. This is not fully satisfactory. The restrictive context of one-shot games should be abandoned, to account for the fact that the underlying strategic environment is a repeated game. Dynamic provision of incentives should be properly analyzed to see what outcomes are sustainable by means of reputation. In practice, some degree of coordination is usually observed outside monetary unions, as one would expect if policy makers do not fully discount the future. Ideally, one would like to understand why a second-best arrangement, in which countries deliberately give up policy independence, may dominate some other form of coordination which does not involve the loss of flexibility.

A second shortcoming of previous contributions concerns how the MU can be sustained. The traditional approach is to assume that countries entering the MU are not allowed to quit it, what we label “enforced participation”. In other words, countries contemplating the formation of a union face a take-it-or-leave-it offer at time zero and are given no further choices afterwards. This is unsatisfactory on both theoretical and empirical grounds.

We abandon the assumption of enforced participation to shed light into how joint policy-making may make the union sustainable even in the absence of an exogenous enforcement technology. The extensions we explore deliver new insights into the sources of the welfare benefits of a monetary union and the way optimal policy should respond to shocks given the countries’ option to leave the union.

By modeling the union as a technology that makes a surprise policy deviation impossible (e.g. an unexpected exchange rate devaluation), we show that an MU may be superior to policy coordination, despite the fact that it gives rise to a loss of flexibility. This occurs since the payoff of a deviation from the “coordinated policy” delivers a smaller payoff when it is anticipated than when it comes as a

3 In Europe, for instance, full monetary integration between the members of the Euro area was preceded by various cooperation arrangements (e.g. the European Monetary System).
4 Persson and Tabellini (2000, page 467) recognize the necessity to complete this analysis: “It is not enough to demonstrate that the policy outcome under cooperative policy making is superior, though, as individual countries generally have incentives to deviate from cooperative policy. The argument is therefore incomplete unless coupled with an argument as to how the suggested solution might be enforced.”
surprise to rival agents. As deviations become less tempting under the MU, better outcomes can be sustained along the equilibrium path on average.

The optimal MU arrangement that emerges with voluntary participation differs markedly from the one under enforced participation. In the latter case, once the union is formed, policy is decided according to time-invariant “Pareto weights” and there are no changes in the way the benefits of belonging to the union are allocated to its members over time. In our case, instead, policy responds to the agents’ incentives to leave the union by tilting both current and future policy in their favor. This finding implies that the monetary policy rule in the MU without enforcement is not guided solely by a time-invariant MU “average” but, in some instances, does take account of the member countries’ local conditions. This point is of interest for the ongoing debate on the role that national developments play in the conduct of monetary policy in the euro area (e.g. Heinemann and Hufner, 2002; Aksoy et Al. 2002).

Finally, depending on the distribution of the shocks and discount factors, our model shows that the MU might be permanent or temporary. For the latter, there are some “fatal” states of the world in which the MU breaks apart along the equilibrium path and countries revert to national monetary policy. Intuitively, this occurs because a large asymmetric shock makes it very costly to follow a common policy in those states, even though this implies giving up the future benefits of the MU. The possibility that a break-up occurs along the equilibrium path highlights the importance of not assuming an “enforcement technology”.

This result is empirically relevant. Economic historians and political scientists have given serious consideration to the “sustainability” of currency unions. Bordo and Jonung (1997) and Cohen (1993) examine the historical record of several monetary regimes, including various forms of currency unions, some of which successfully lasted for as long as they could (the Belgium-Luxembourg monetary union, founded in 1922, was absorbed into EMU) and others which collapsed fairly quickly (the East African Community collapsed in 1977 after about a decade from

5A related view was recently offered by Milton Friedman: “[...] I think that within the next 10 to 15 years the eurozone will split apart” (Financial Times, June 7 / June 8, 2003).
its foundation). The causes of a MU breakup, which remain largely untouched by formal economic analysis, are analyzed in this paper.

Recent contributions have revived interest on monetary unions. Alesina and Barro (2002) and Cooley and Quadrini (2003) present general equilibrium models of a currency union which allow welfare analysis to be based on the representative agent utility function. The analysis of our paper complements these studies by providing insights on the interplay of dynamic incentives that make a monetary union sustainable in the absence of an enforcement technology. In doing this, however, we abstracted from explicit microfoundations, as the basic ideas transcend a specific setting. The integration of the two approaches is a natural next step.

From a methodological point of view, our analysis relies on results from the literature on “limited commitment”, pioneered by Thomas and Worrall (1988) and Kocherlakota (1996) and originally applied to a risk-sharing environment. One important technical difference in comparison to those studies is that ours has an additional constraint requiring both agents to follow the same action as long as they remain in the MU. The loss of a policy instrument gives rise to a trade-off that in certain circumstances may lead to a break-up of the MU contract along the equilibrium path. This introduces the new issue of the sustainability of the contract, which increases the complexity of the problem significantly. We analyze the sustainability issue and discuss two cases in which under the optimal policy the set of states in which the union breaks apart is independent of the history and of the countries’ bargaining power at the union formation stage. This allows the problem to be studied in a relatively simple way.

The paper is organized as follows. The economic environment and the two monetary regimes considered are described in the next section. Section 3 provides a recursive formulation of the MU problem, which is used in Section 4 to characterize optimal policy and discuss the MU sustainability. Section 5 illustrates the key features of our model using an example economy. The main findings and conclusions are summarized in Section 6.

6This literature has recently found fruitful applications in the international trade literature, e.g. Bond and Park (2002).
2. The economic environment

We consider a symmetric setup with two infinitely lived \textit{ex-ante} identical countries, named Home and Foreign, each controlling a policy instrument \(\pi, \pi^* \in [\overline{\pi}, \underline{\pi}] \) (asterisks denote foreign variables).\(^7\)

The state of the world \(s \) in period \(t \) is determined by the realization of a discrete and i.i.d. random variable with support \(S = \{s_1, s_2, \ldots, s_S\} \) with corresponding probabilities denoted by \(p_s \). The state \(s \) affects the utility functions for each country in potentially different ways.\(^8\) We assume that the distribution of these effects over individual countries is symmetric.\(^9\) We also assume there is a payoff irrelevant random variable \(x_t \) on which countries can condition their strategies, which is independent across time and states and uniformly distributed in the \([0,1]\) interval.

Let \(U(\pi, \pi^*, s) \) and \(U^*(\pi^*, \pi, s) \) be the per-period utility of, respectively, Home and Foreign in state \(s \) when the policy pair \((\pi, \pi^*) \) is chosen. The functions \(U(\pi, \pi^*, s) \) and \(U^*(\pi^*, \pi, s) \) are assumed to be bounded, jointly differentiable with respect to \(\pi \) and \(\pi^* \) and to have a negative semi-definite Hessian. For there to be a coordination issue we also require some spillover between the agents’ actions i.e.\(U_2^*, U_2 \neq 0 \). Each country maximizes the expected value of the intertemporal utility function \(E_0 \sum_{t=0}^{\infty} \delta^t U(\cdot) \), where \(\delta \in (0, 1) \) is the discount factor.

The history at time \(t \) is denoted by \(h_t \) where:

\[
h_t = (\pi_0, \ldots, \pi_{t-1}; \pi_0^*, \ldots, \pi_{t-1}^*; s_0, \ldots, s_t; x_0, \ldots, x_t),
\]

i.e. \(h_t \in H_t : \left[[\pi, \overline{\pi}]^{t-1} \right] \times \left[[\pi^*, \overline{\pi}]^{t-1} \right] \times S^t \times [0,1]^t \).

Given this general environment different games can be played depending on the monetary regime chosen. Two regimes are considered: Independent National

\(^7\)This assumption is for technical purposes. We will consider bounds that are so large that this constraint will not affect policy.

\(^8\)We can think of each state \(s \) as defined by a pair of country-specific variables, as in the example of Section 5.

\(^9\)The purpose of this assumption is to reduce notation by keeping the environment symmetric. It can easily be relaxed.
Monetary Policy (INMP) or a Monetary Union (MU). Under the former each country has its own money printing machine and decides monetary policy unilaterally. Under the MU the individual country money prints are replaced by a commonly managed print, that is used to produce the MU single currency. The loss of a policy instrument (money print) inherent to the MU generates costs and benefits. The cost is that countries in the MU are forced to use the same policy, which may be inefficient when countries are hit by asymmetric shocks. On the other hand, the benefit arises from the fact that the single money-print makes unilateral “surprise” deviations from an agreed policy impossible. We assume that a country’s decision to abandon the union (re-installing its own money print and currency) does not come as a surprise to the other country. This is a realistic assumption, justified by noting that the decision to leave the MU takes more time and is more easily observed by the other parties than the decision to deviate from a policy plan under INMP. Since deviations no longer come as a surprise in the MU, they become less attractive. This facilitates cooperation. In the next subsections we will describe in greater detail these two monetary arrangements.

Finally, it should be stressed that the qualitative nature of the results presented below would not change if the model was modified to account for other potential benefits of forming an MU, such as a reduction in transaction costs (this can be done by adding an indicator variable to the agents' utility functions) or a fixed cost of breaking the union. We decided to overlook such effects for clarity of presentation.

2.1. Independent National Monetary Policy

When countries retain control over their monetary instrument we have the following timing of events. At the beginning of period t the state s_t and the public randomization device x_t are observed, then Home and Foreign simultaneously set monetary policy $\pi(h_t)$ and $\pi^*(h_t)$, respectively.

Let π_t denote Home’s policy function, mapping any possible time-t history into a policy choice: $\pi_t : H_t \rightarrow [\pi, \bar{\pi}]$. Similarly for Foreign $\pi^*_t : H_t \rightarrow [\pi, \bar{\pi}]$.

A policy plan $\Pi \equiv \{\pi_t\}_{t=0}^{\infty}$ is a stochastic vector process which maps any possible history h_t into a policy choice, π_t for all t. Let P be the set of all possible
Definition 1. A subgame perfect policy pair $\gamma \equiv (\Pi, \Pi^*) \in P \times P$ is a pair of policy plans such that at every history h_t each country chooses a best response to the other player’s strategy.

Let $w(\gamma) \equiv E_{\tau} \sum_{i=1}^{\infty} \delta^{i-1} U(\pi_{\tau+i}, \pi^*_{\tau+i}, s_{\tau+i})$ denote Home’s expected utility from the subgame perfect policy pair γ (similarly $w^*(\gamma) \equiv E_{\tau} \sum_{i=1}^{\infty} \delta^{i-1} U^*(\pi^*_{\tau+i}, \pi_{\tau+i}, s_{\tau+i})$ for Foreign), and indicate by W the set of all such (w, w^*) pairs. We will refer to W as the set of subgame perfect payoffs.

Proposition 1. A policy pair γ is subgame perfect under INMP if and only if the following holds (for all $s \in S$ and $\tau = 0, 1, 2, ...$):

\begin{align}
U^*(\pi^*, \pi^*_\tau, s_{\tau}) + \delta E_{\tau} \left[\sum_{i=1}^{\infty} \delta^{i-1} U^*(\pi^*_{\tau+i}, \pi^*_{\tau+i}, s_{\tau+i}) \right] & \geq U^*(\pi^d_{\tau}, \pi^*_\tau, s_{\tau}) + \delta w_i \quad (2.1) \\
U(\pi_{\tau}, \pi^*_\tau, s_{\tau}) + \delta E_{\tau} \left[\sum_{i=1}^{\infty} \delta^{i-1} U(\pi_{\tau+i}, \pi^*_{\tau+i}, s_{\tau+i}) \right] & \geq U(\pi^d_{\tau}, \pi^*_\tau, s_{\tau}) + \delta w \quad (2.2)
\end{align}

Where π^d_{τ} and π^*_{τ} stand for the optimal deviations and w_i is the smallest expected value attainable with a subgame perfect policy pair.

Proof: Appendix A.

We will denote the set of subgame perfect policy pairs γ with Γ.

Lemma 1. (i) The set of subgame perfect policy pairs, Γ, is compact and convex. (ii) The set of subgame perfect payoffs, W, is compact.

Proof: Appendix A.

Given a specific utility function and parameter values, we can use the methods developed by Abreu, Pearce and Stacchetti (1990) to find the set W. We will do this for the example economy analyzed in Section 5.
2.2. Monetary Union

As an alternative to independent monetary policies, countries can choose to form a Monetary Union, in which local currencies are replaced by a common one and policy is jointly determined.

We will focus our analysis on the optimal MU arrangement that countries would set up at the institutional design phase. The key feature of this regime is that a common policy \(\pi = \pi^* \) must be implemented if the union is to be sustained. At every point in time, implementation of the prescribed policy, \(\pi \), requires unanimity. It is assumed that countries observe the state \(s \), the payoff irrelevant variable \(x \) (as under INMP) and then make simultaneous announcements, \(a (h_t) \), \(a^* (h_t) \) on whether to follow the prescribed policy \((a = 0) \) or not to follow it \((a = 1) \). If \(a = a^* = 0 \), the proposed policy \(\pi \) is implemented and the union is continued into the future. Otherwise, the union is dissolved and countries revert to playing some subgame perfect equilibrium of the INMP game.

Formally, the MU policy plan consists of three rules. The first is a “dissolution rule”, \(D \), which, based on history \(h_t \), indicates member countries whether to dissolve the union \((D = 1) \) or not \((D = 0) \).10 The second rule, \(\Pi \), determines the common policy to be implemented, based on history \(h_t \), while the union is sustained. The third rule, \(\beta \), selects the equilibrium of the INMP game that is played if the union is dissolved. Denote by \(w_s \equiv E_\tau \left[\sum_{i=0}^{\infty} \delta^i U (\pi_{\tau+i}, \pi^*_{\tau+i}, s_{\tau+i}) \mid s_\tau \right] \) the expected utility delivered to Home by the \(\beta \) rule conditional on the state \(s \) (similarly, \(w^*_s \equiv E_\tau \left[\sum_{i=0}^{\infty} \delta^i U^* (\pi^*_{\tau+i}, \pi_{\tau+i}, s_{\tau+i}) \mid s_\tau \right] \) for Foreign), and indicate by \(W_s \) the set of all such \((w_s, w^*_s)\) pairs. We summarize this scheme with:

Definition 2. A MU policy plan is composed of three sequences of functions. The first prescribes whether to remain in the union, \(D_t : H_t \rightarrow \{0, 1\} \). The second determines the common policy for period \(t \), \(\Pi_t : H_t \rightarrow \left[\pi, \bar{\pi} \right] \). The third selects the INMP equilibrium values to assign to each country when a break-up occurs, \(\beta_t : H_t \times D \times a \times a^* \rightarrow (w_s, w^*_s) \in W_s \).

10Note that since \(D \) can depend on the current realization of the public randomization device \(x_t \) the fact that \(D = \{0, 1\} \) is not an important restriction. We can use the dependence of \(D \) on \(x_t \) to convexify over \([0, 1]\).
Note that the equilibrium values prescribed by the function β upon a break-up are allowed to depend on all the history prior the break and on whether the break-up was consensual or unilateral. Through this mechanism, a country that reneges on a prescribed policy and causes a break-up can be harshly punished; meanwhile, if there are states of the world in which it is optimal to dissolve the MU then countries can play an efficient INMP equilibrium after the break-up.

Let us adopt the following:

Definition 3. A MU policy plan (D, Π, β) is sustainable if it is a best response for Home and Foreign to always follow the recommended policy (i.e. $a_t = a_t^* = 0$).

(i) For every history h_t with $D_t = 0$, given a recommended policy π_t, the best response for each country is to follow it.

(ii) For every history h_t with $D_t = 1$, it must be a best response to follow the strategies prescribed by β.

Any policy plan (D, Π, β) will satisfy (ii) given that by definition $\beta(H_t, D, a, a^*)$ determines continuation values after break-ups that are part of the equilibrium value set in the continuation game. Therefore, to check whether a policy plan is sustainable, we only need to verify that the following is satisfied:

Condition 1 : For all h_τ with $D_\tau = 0$:

$$
U^* (\pi_\tau, \pi_\tau, s_\tau) + \delta E_\tau \left[\sum_{i=1}^{\infty} \delta^{i-1} U^* (\pi_{\tau+i}, \pi_{\tau+i}, s_{\tau+i}) \mid (D, \Pi, \beta) \right] \geq w^*[\beta (h_\tau, 0, 0, 1)]
$$

$$
U (\pi_\tau, \pi_\tau, s_\tau) + \delta E_\tau \left[\sum_{i=1}^{\infty} \delta^{i-1} U (\pi_{\tau+i}, \pi_{\tau+i}^*, s_{\tau+i}) \mid (D, \Pi, \beta) \right] \geq w[\beta (h_\tau, 0, 1, 0)]
$$

Condition 1 requires that the welfare enjoyed by a country under the MU is not smaller than the welfare delivered by the β rule to that country in case it decides not to follow the prescribed policy (the value reported on the right hand side of the inequality).

Let Σ denote the set of sustainable MU policy plans. Let $v (D, \Pi, \beta), v^* (D, \Pi, \beta)$ be the expected utility from a pair of MU-sustainable policy sequences for Home
and Foreign, respectively. Let V be the set of all pairs (v, v^*) such that $(D, \Pi, \beta) \in \Sigma$. We will refer to V as the set of MU-sustainable payoffs.

Lemma 2. (i) The set of MU sustainable policies, Σ, is compact and convex. (ii) The set of MU sustainable payoffs, V, is compact and convex.

Proof: Appendix A.

3. A Recursive Representation of the MU

3.1. Efficient frontier

To characterize the set of efficient policies in the MU we need the following:

Definition 4. A policy plan $(D, \Pi, \beta) \in \Sigma$ is efficient if there exists no other element in Σ that Pareto dominates it.

We define v_{max} to be the maximal level of utility available to one of the countries from a policy sequence in Σ. We define v_{min} as follows:

$$v_{\text{min}} = \max_v v$$

subject to:

$$(v, v^*) \in V$$

$$v^* = v_{\text{max}}$$

Proposition 2. For all pairs $(v, v^*) \in V$ with $v^* \geq v_{\text{min}}$ there exists an efficient allocation in Σ which delivers the payoff vector (\bar{v}, v^*), where \bar{v} is defined as follows:

$$\bar{v} = \max_{q,q^*} q$$

subject to:

$$(q, q^*) \in V$$

$$q^* \geq v^*$$

11 By the symmetry of the setup these values are identical for Home and Foreign. The asterisk is thus suppressed.
Proof: Appendix A.

The key of this proposition is not the existence of a solution to the maximization problem12 but rather that in the solution the second constraint must be binding \((q^* = v^*)\). That implies that the efficient frontier of the set \(V\) is decreasing in the range \([v_{\text{min}}, v_{\text{max}}]\). Furthermore, it implies that the Pareto frontier \(V\) is self-generating.

We can characterize the Pareto frontier as follows. Let \(V(v^*)\) denote the expected utility delivered by a social planner to Home conditional on having promised an expected utility level \(v^*\) to Foreign, \(V: [v_{\text{min}}, v_{\text{max}}] \rightarrow [v_{\text{min}}, v_{\text{max}}]\). Then:

\[
V(v^*) = \max_{(D, \Pi, \beta)} E_0 \left[\sum_{t=0}^{\infty} \delta^t U(\pi_t, \pi_t^*, s_t) \right] \tag{3.1}
\]

subject to:

\[
(D, \Pi, \beta) \in \Sigma \tag{3.2}
\]

\[
E_0 \left[\sum_{t=0}^{\infty} \delta^t U^* (\pi_t^*, \pi_t, s_t) \big| (D, \Pi, \beta) \right] = v^* \tag{3.3}
\]

Constraint (3.2) imposes that policy pairs must be sustainable, (3.3) is the “promise keeping” constraint i.e. it requires the plan to deliver an expected utility level of at least \(v^*\) to Foreign.

3.2. On the optimal determination of post-break-up equilibria.

There are two roles played by \(\beta\). The first is to provide a punishment for a country that does not follow a prescribed policy an the second is to determine a continuation equilibrium when the MU is optimally dissolved. The following Lemma captures the optimal properties of \(\beta\) when performing these different roles.

Lemma 3. (i) If a country, say Home, reneges on the prescribed policy (sets \(a_t = 1\)) then it is optimal to have \(\beta(h_t, 0, 1, 0) = (w_s, w^*(w_s))\). Where \(w_s\) is

12 This follows from the compactness of \(V\).
the minimum value for Home in W_s and $w^* (\underline{w}_s)$ is highest the value for Foreign consistent with this equilibrium. Similarly $\beta (h_t, 0, 0, 1) = (w (w^*), \underline{w}_s)$

(ii) If, for a given h_t, $D(h_t) = 1$ then it is optimal to set $\beta (h_t, 1, 0, 0) = (\underline{w}_s, \underline{w}_s)^*$. Where $(\underline{w}_s, \underline{w}_s)^*$ is an element on the efficient frontier of the INMP game conditional on the state s having been realized.

Proof:

(i) Follows from noting that Condition 1 is relaxed by assigning the worst possible continuation values to countries that have deviated. This allows for a greater range of Π to be sustainable. Since equilibrium policy will have no deviations, payoffs are not negatively affected.

(ii) Suppose that after a recommended dissolution β induces a Pareto dominated equilibrium with values (w, w^*). Now suppose instead we picked a pair $(\overline{w}, \overline{w}_s)$ that Pareto dominates (w, w^*). This would relax Condition 1 since the RHS is not affected by this change but LHS is increased. Furthermore, the value of being in the MU is increased because now in the eventuality that a break-up is recommended the continuation values are weakly higher for both countries. Therefore, an optimal arrangement will always recommend an efficient equilibrium of the INMP game after an on-equilibrium dissolution.

The previous result is intuitive. When the break-up results from the deviation by one of the countries then it is optimal to punish this country as harshly as possible. By so doing, the incentives to deviate are curbed. On the other hand, when the break-up is consensual, it is in the best interest of both countries to coordinate policy in the most efficient way. We can therefore summarize the characterization of the optimal break-up rule β in the following way:

$$\beta_t (h_t, D_t, a_t, a^*_t) = \begin{cases}
(\overline{w}_s, \overline{w}_s)^* & \text{if } D_t = 1, a_t = a^*_t = 0 \\
(w_s, w^*(\underline{w}_s)) & \text{if } D_t = 0 \text{ and } a_t = 1 \\
(w (w^*), \underline{w}_s^*) & \text{if } D_t = 0 \text{ and } a^*_t = 1
\end{cases}.$$

This is not a full characterization of β since the particular points in the Pareto frontier of the INMP game that are chosen after a consensual break-up still remain to be determined. We will say more about this in Section 4.
3.3. Recursive Representation

The function $V(v^*)$ is decreasing, strictly concave and continuous.\footnote{Decreasing follows from Proposition 2. Concavity follows since we assumed the period utility function is strictly concave in π_s and the constraint set Σ is convex. Continuity is implied by the Theorem of the Maximum.} Furthermore, monotonicity implies it is differentiable almost everywhere. Unfortunately the sequential representation of $V(v^*)$ (3.1 – 3.3) is not very useful to figure out the properties of the optimal policy. Denote by the function $W(w^*_s)$ the Pareto frontier of the INMP game, i.e. the maximum value that can be assigned to Home when foreign is assigned a value of w^*_s. Finally, let d_s denote threshold values for x_t above which a break-up is recommended in state s. The next proposition establishes a recursive formulation of the problem that is helpful to characterize the MU equilibrium.

Proposition 3. The function V satisfies the functional equation:

$$V(v^*_o) = \max_{(\pi_s, v^*_s, d_s, \overline{w}_s)} \sum_{s \in S} p_s \left\{ (1 - d_s) [U(\pi_s, \pi_s, s) + \delta V(v^*_s)] + d_s \overline{W}(\overline{w}_s) \right\}$$ \hspace{1cm} (3.4)

subject to:

$$v^*_o = \sum_{s \in S} p_s \left\{ (1 - d_s) [U^*(\pi_s, \pi_s, s) + \delta v^*_s] + d_s \overline{w}_s \right\}$$ \hspace{1cm} (3.5)

$$w^*_s \leq U^*(\pi_s, \pi_s, s) + \delta v^*_s \quad \forall s \ s.t. \ s.t. \ d_s < 1$$ \hspace{1cm} (3.6)

$$w_s \leq U(\pi_s, \pi_s, s) + \delta V(v^*_s) \quad \forall s \ s.t. \ d_s < 1$$ \hspace{1cm} (3.7)

$$v^*_s \in [v_{\min}, v_{\max}], (\overline{W}(\overline{w}_s), \overline{w}_s) \in W_s, \ d_s \in [0, 1]$$ \hspace{1cm} (3.8)

Proof: Appendix A.

Constraint (3.5) is the promise keeping constraint, constraints (3.6) and (3.7) are the sustainability (participation) constraints for Foreign and Home, respectively, so that they do not leave the union. Condition (3.8) imposes that promised continuation values lie in the corresponding set of sustainable and efficient MU and INMP values. Note that in this representation we have incorporated the results of Lemma 3. This shows up in that the LHS of the participation constraints...
is given by w^* and w_s. It is also embedded in the fact that we maximize over w^* and the value for $Home$ is given by $\mathcal{W}(w^*)$ reflecting the fact that after a consensual break-up the countries always go to a point on the Pareto frontier of the INMP game. Note that the dissolution function, D, can be expressed as:

$$D(v_0, s, x) = \begin{cases}
0 & \text{if } x > d_s(v_0) \\
1 & \text{if } x \leq d_s(v_0)
\end{cases}$$

4. Characterization of the Equilibrium in the Monetary Union

This section establishes some results to characterize the MU equilibrium. First we study policy dynamics inside the union. Secondly we analyze the sustainability of the MU.

4.1. Optimal policy and dynamics in the MU

Let us take D as given and solve for the optimal policy inside the union. Consider the problem (3.4-3.8). For any feasible allocation that promises a value of v_o^* to Foreign, we can divide the state space in the following partition:

$$S_1 = \text{states in which neither (3.6) nor (3.7) is binding}$$
$$S_2 = \text{states in which (3.6) is binding but not (3.7)}$$
$$S_3 = \text{states in which (3.7) is binding but not (3.6)}$$
$$S_4 = \text{states in which the union cannot be sustained.}$$

The states in S_4 are such that either both countries mutually prefer to break the union or the country that prefers to remain in the union is unable (or unwilling) to provide the necessary incentives to prevent the other country from abandoning the union.\footnote{In Kocherlakota (1996) it is never the case that both participation constraints bind at the same time (i.e. $S_4 \equiv \emptyset$). This occurs since his contract does not restrict players’ actions under the contract to be identical, hence allowing it to replicate the policy under autarky (INMP in our case). Instead, the additional constraint imposed by our problem that countries must choose \textit{the same} policy while in the MU creates the possibility that some INMP outcomes cannot be replicated by the MU.}

The optimal MU design will recommend dissolution for those states ($d_s = 1$).
A useful characterization of the equilibrium properties of this problem is obtained from the Lagrangian representation of the functional equation that appeared above. Before doing so we must first address one last technical point. So far, we have shown that \(V \) is differentiable almost everywhere but, for the analysis that follows we actually need it to be differentiable everywhere. Koeppl (2003) shows how things can go wrong in the environment of Kocherlakota (1996) if \(V \) is not differentiable everywhere. He also provides sufficient conditions to guarantee differentiability of \(V \). We will consider parameter settings such that these conditions are met. Let us write the Lagrangian:

\[
V(v^*_o) \equiv \max_{(\pi, v^*_s, \pi^*_s)} \sum_{s \in S} p_s \left\{ (1 - \bar{d}_s) \left[U(\pi, \pi^*_s, s) + \delta V(v^*_s) \right] + \bar{d}_s \bar{W}(\bar{\pi}_s) \right\} \tag{4.1}
\]

\[
+ \lambda \left\{ \sum_{s \in S} p_s \left[(1 - \bar{d}_s) \left[U^*(\pi, \pi^*_s, s) + \delta v^*_s \right] + \bar{d}_s \bar{w}_s \right] - v^*_o \right\} \tag{4.2}
\]

\[
+ \sum_{d_s < 1} \mu_s \left[(1 - \bar{d}_s) \left[U^*(\pi, \pi^*_s, s) + \delta v^*_s - \bar{w}_s \right] \right] \tag{4.3}
\]

\[
+ \sum_{d_s < 1} \theta_s \left[(1 - \bar{d}_s) \left[U(\pi, \pi^*_s, s) + \delta V(v^*_s) - \bar{w}_s \right] \right] \tag{4.4}
\]

The first order conditions with respect to \(v^*_s \) give:

\[
(p_s + \theta_s) V'(v^*_s) + \lambda p_s + \mu_s = 0 \text{ if } v^*_s \in (v^*_s, v^*_s) \tag{4.5}
\]

\[
\geq 0 \text{ if } v^*_s = v^*_s
\]

\[
\leq 0 \text{ if } v^*_s = v^*_s
\]

The one with respect to \(\pi_s \) yields:

\[
(p_s + \theta_s) U_\pi + (\lambda p_s + \mu_s) U^*_\pi = 0 \tag{4.6}
\]

The one with respect to \(\bar{\pi}_s \) yields:

\[
\bar{W}(\bar{\pi}_s) + \lambda = 0 \tag{4.7}
\]

The last result completes the characterization of the optimal \(\beta \) function. Lemma 3 already showed that the points had to lay on the efficient frontier. This result shows that the exact point on the frontier has a slope of \(-\lambda\), which is identical to
the slope of the Pareto frontier of the MU frontier at the current promised value (note that the envelope condition yields $V'(v^*_o) = -\lambda$). Therefore, if breakup occurs at a node in which countries had entered with very similar promised values, the outside INMP equilibrium will also have this feature.

Note that, at an internal solution, (4.5) and (4.6) imply:

$$V'(v^*_s) = \frac{U_\pi}{U_\pi}$$

(4.8)

an efficiency condition equating the agents’ marginal rate of substitution to the technical rate of transformation (the slope of the efficient frontier, V'). Let us study the implications of the first order conditions in the different regions of the state space.15

Region S_1: Neither participation constraint binds, hence $\mu_s = \theta_s = 0$ which implies $V'(v^*_s) = -\lambda < 0$. As noted above $V'(v^*_o) = -\lambda$, which gives:

$$V'(v^*_o) = V'(v^*_s).$$

(4.9)

It follows from the strict concavity of V that $v^*_o = v^*_s$. Hence, when neither participation constraint binds, the expected utility promised to each country in the union is the same one with which the country entered the period, i.e. the promised value is kept constant at v^*_o for Foreign and at $V(v^*_s)$ for Home. Moreover, equations (4.8) and (4.9) show that current policy (π) in the states of this region is such that a constant ratio between the marginal utilities of Home and Foreign is maintained. Note how this last result is isomorphic to the one that emerges as the internal optimum of a planner’s problem in which each country’s utility function is given a time-invariant Pareto weight.

Region S_2: The participation constraint of Foreign binds, i.e. $\mu_s > 0, \theta_s = 0$. This yields:

$$V'(v^*_s) = V'(v^*_o) - \frac{\mu_s}{p_s}$$

(4.10)

15The analytical derivation of the equilibrium properties in regions S_1, S_2 and S_3 is analogous to the analysis developed by Kocherlakota (1996) for a risk-sharing problem.
which implies that $v_s^* > v_o^*$ (by the concavity of V). Hence in states of the world belonging to S_2 the promised utility to Foreign increases (the expected utility of Home decreases). It follows from equation (4.8) that the current policy choice is also closer to Foreign’s preferred policy. This contrasts with the constant weighting observed in the presence of an enforcement technology (i.e. problem without participation constraints).

Region S_3: This yields symmetric opposite results to those in Region S_2.\(^{16}\)

These results illustrate the nature of optimal policy in a monetary union with voluntary participation. Policy obeys a state contingent rule which only gets revised when one of the countries has the incentive to leave the union (i.e. the participation constraint binds). When no such incentives arise, the rule is analogous to the efficient one produced by a planner who maximizes the utility of the two countries assigning each of them a Pareto weight. If one country has the incentive to leave the union, then the new policy rule for the current and future periods is closer to that country’s unilateral optimal choice. The new rule increases the country’s weighting in the current policy decision and the expected continuation value from remaining in the union, making the country indifferent between remaining or leaving. This rule remains in place until the next “renegotiation”, i.e. until a state is again reached where one participant has an incentive to leave.

4.2. Sustainability of the Monetary Union

The general characterization of the sustainability can be given by three kind of states, first we can have no break-up states, that is, regardless of the promised value v_0^* in state s we never observe a break-up. Then we have the break-up states for which the MU always dissolves irrespective of v_0^* and finally we have the fragile states, for which the sustainability of the MU depends on v_0^*.

\(^{16}\) Participation constraint of Home binds, i.e. $\mu_s = 0, \theta_s > 0$.

$$V'(v_0^*) = \frac{p_s}{p_s + \theta_s} V'(v_o^*)$$

which implies $v_s^* < v_o^*$ (by the concavity of V and recalling $V' < 0$). Therefore, in states of the world belonging to S_3 both the current and promised utility delivered to Foreign decrease.
The following graphs illustrate the three different types of states:

The dotted frontier V_s is the Pareto frontier achievable if the countries do not break up in state s. W_s is the frontier of values that can be achieved under INMP when the current state is s. In the leftmost figure the set of values achievable conditional on staying in the MU is higher than that under INMP for all possible values for Foreign therefore this would be a no break state. For the figure in the center the opposite is true, values in the INMP dominate those achievable under the MU for any v^* therefore a break-up will always be recommended for this state. Finally in the last case the sustainability of the MU will depend on v^*. Certain levels of promised utility can be more efficiently delivered when there are two instruments available rather than one. The value v_2^* is best to deliver it under INMP but the value v_1^* is better to deliver it under a MU. Another example that helps us understand the dependence on v^* is the case in which the shocks are almost perfectly correlated. Clearly if we want to deliver symmetric values there will be no reason to break up the union. Suppose instead we wanted to give a very high value to Foreign, this might be easier to do if we have two instruments at our disposal instead of one.

If the set of “Fragile” states is empty then we have separability in the sense that the Dissolution function D is only a function of s and not the whole history. This result implies that, regardless of the initial bargaining power of the two countries in the initial institution design phase of the union, they would both agree on the states of the world in which to sustain the union and on which not to. This property is quite appealing, the players will remain in the union as long as they find it mutually profitable in expectation. Though, as we showed in the previous section, their individual value of being part of the union will be changing as time goes by. From a computational standpoint this facilitates the analysis of
the Pareto frontier, since we need only find one optimal set of states on which the union holds. In Appendix B we analyze two cases for which separability holds. The first case assumes that regardless if the break-up was recommended or unilateral the countries continuation value is given by the repeated static Nash Equilibrium, \(\beta_t : S \times D \times a \times a^* \rightarrow (w^N_s, w^N_s) \). The second case is given by assuming preferences are quasilinear and allowing for transfers.

5. An example economy

This section utilizes a stylized two-country economy to illustrate, by means of simple algebra and numerical computations, some of the results that were discussed above in a more general context.

Let the random variables \(\varepsilon_t \) and \(\varepsilon^*_t \) denote a time-varying policy target for, respectively, Home and Foreign. Each state of the world is characterized by the pair \(s \equiv (\varepsilon_s, \varepsilon^*_s) \in S \). It is assumed that \(\varepsilon \) and \(\varepsilon^* \) follow an iid process with: \(E(\varepsilon) = E(\varepsilon^*) = \bar{\varepsilon}, \ var(\varepsilon) = var(\varepsilon^*) = \sigma^2 \) and covariance \(cov(\varepsilon_s, \varepsilon^*_s) \). We focus on an ex-ante symmetric case, so that even though the realizations of \(\varepsilon_s \) and \(\varepsilon^*_s \) may differ, their joint distribution is symmetrical.

Let Home’s objectives be described by the intertemporal objective function \(V = \sum_{t=0}^{\infty} \delta^t U_t \). The period utility function is given by: \(^{17} \)

\[
U(\pi_t, \pi^*_t, s_t) = (1 - \delta) \left[-\frac{(\pi_t - \varepsilon_t)^2}{2} + \alpha (\pi_t - \pi^*_t) \right]
\] (5.1)

where \(\pi_t \) and \(\pi^*_t \) denote the control variables of, respectively, Home and Foreign (an analogous utility expression holds for Foreign). The quadratic term captures the costs incurred by a country when the policy target is not hit. The linear term \(\pi_t - \pi^*_t \) posits that Home benefits from setting its instrument “above” the level chosen by Foreign. For concreteness we can think of \(\pi_t \) as denoting Home’s inflation, over which policy makers have perfect control. This abstraction provides a stylized way to describe a country’s motive to surprise its neighbor by means of an

\(^{17}\text{Since the objective of this section is mainly to illustrate the previous theory, we chose not to do a formal derivation of this particular objective function.}\)
unanticipated monetary expansion. This mechanism gives rise to a coordination problem. We will next consider the outcomes which emerge from this setup under alternative equilibrium notions and assumptions about the enforcement technology.

5.1. Subgame perfect equilibria in the repeated game (INMP)

The repeated nature of the game allows countries to sustain reputational equilibria that dominate the static Nash equilibrium in terms of welfare. Equations (2.1) and (2.2) in Proposition 1 characterize sustainable strategies in this repeated game. A recursive formulation of those conditions can be given through the value function $W(w^*_s)$, which traces the frontier of the maximal utility attainable by Home provided the expected utility delivered to Foreign is w^*_s.\footnote{The recursive formulation is achieved expressing the continuation strategy by means of its value, following Abreu, Pearce and Stacchetti (1990).} Formally, the value function $W(w^*_s)$ for the INMP game is defined as:

$$W(w^*_o) \equiv \max_{\pi_s, \pi^*_s, w^*_s} \Sigma_s [U(\pi_s, \pi^*_s, s) + \delta W(w^*_s)] p_s$$

subject to:

$$w^*_o = \Sigma_s [U^*(\pi^*_s, \pi_s, s) + \delta w^*_s] p_s$$

$$U^*(\pi^*_s, \pi_s, s) + \delta w^*_s \geq U^*(\pi^*_d, \pi_s, s) + \delta w^*_d \quad \forall s$$

$$U(\pi_s, \pi^*_s, s) + \delta W(w^*_s) \geq U(\pi^*_d, \pi^*_s, s) + \delta w^*_d \quad \forall s$$

$$W(w^*_s), w^*_s \in W$$

The incentive constraints (5.4 and 5.5) impose the requirement that countries must be willing to stick to the optimal plan in each period and for all states of the world. The right hand side of these constraints states that a deviation from the optimal plan is punished in the future with the reversion to the “worst” sustainable equilibrium, which has an expected value of w^*_o.\footnote{The root of this idea is in the “stick and carrot” strategy first proposed by Abreu (1988).} The credibility of this threat requires that the strategy pair that yields w^*_s is itself a subgame perfect equilibrium satisfying the participation constraints (2.1) and (2.2) (see Appendix C).
With reputation, the first best can be sustained provided the discount factor is sufficiently large. In the example economy, it is easy to show that for a given “punishment value” \(w \), the first best is sustainable if \(\delta \geq \frac{\alpha^2}{\alpha^2 - 2w} \). For instance, if the Nash equilibrium is chosen as a punishment for deviations \((w_N = -\frac{\alpha^2}{2}) \), the first best can be sustained with reputation provided \(\delta \geq \frac{1}{2} \). Even if the discount is smaller than this value, the first best can be supported by a (credible) punishment more severe than Nash. In general, finding the “best” (possibly smaller than the first-best) and the “worst” sustainable values from the solution of problems (C.1) and (C.2) can be done numerically for a given model parametrization. A few examples are discussed in Section (5.3).

5.2. Voluntary Monetary Union

Without enforcement, the following participation constraints need to be satisfied for countries to remain in the Union in all state where the union is sustained:

\[
U^*(\pi_s, \pi_s, s) + \delta v^*_s \geq U^*(\pi^*_s, \pi_s, s) + \delta w^*_s \quad (5.6)
\]
\[
U(\pi_s, \pi_s, s) + \delta V (v^*_s) \geq U(\pi^*_s, \pi^*_s, s) + \delta w_s \quad (5.7)
\]

where the right hand side of these constraints denotes the INMP payoff allocated to Foreign and Home by the breakup rule \(B(H, D, a, a^*) \) discussed in Section 2, which depend on the recommendation of the “divorce rule” \((D) \), the player’s announcements \((a, a^*) \) and the state in which the breakup occurred. These four variables allow unilateral (off-equilibrium) breakups to be distinguished from consensual (on-equilibrium) breakups. As discussed in section 2, this mechanism permits the breakup rule to allocate “harsh punishment” to unilateral breakups and to reward consensual breakups with the reversion to a “good” INMP equilibrium.

A straightforward application of the results of Section 4.1 allows optimal policy in the MU to be characterized as follows:

Proposition 4. Policy in the example economy is a convex combination of the
preferred policies by Home (ε_s) and Foreign (ε^*_s):

$$\pi_s = \kappa_s \varepsilon_s + (1 - \kappa_s) \varepsilon^*_s$$ \hspace{1cm} (5.8)

where the weight κ_s is given by:

(i) $\kappa \equiv \frac{1}{1 + \lambda}$ when neither participation constraint binds (Region S_1)

(ii) $\kappa^F_s \equiv \frac{p_s}{p_s(1 + \lambda) + \theta_s}$ when Foreign’s participation constraint binds (Region S_2)

(iii) $\kappa^H_s \equiv \frac{p_s + \theta_s}{p_s(1 + \lambda) + \theta_s}$ when Home’s participation constraint binds (Region S_3).

Proof: Follows from the first order condition (4.6) and equation (5.1) by noting that the Lagrange multiplier μ_s and θ_s are zero when their respective constraint does not bind.

When no participation constraint binds policy obeys a time-invariant weighting of the policies preferred by Home (ε_s) and Foreign (ε^*_s), with weights κ and $(1 - \kappa)$, respectively.\(^{20}\) This obviously replicates the outcomes of a MU in which participation is not an issue. More interestingly, the proposition indicates that if a state is reached where the participation constraints of a country binds, then the optimal policy rule (5.8) prescribes that this country is given a greater weight in the decision process (note that $\kappa^H_s > \kappa$ and that $\kappa^F_s < \kappa$). As was discussed for the general case in Section 5.2, when a country’s participation constraint binds the optimal rule provides incentives to remain in the union by increasing both the current return and the future value of belonging to the union (the country is promised a greater “expected utility”).

5.3. Numeric examples

A few numeric examples illustrate the workings of our theory. Assume four states of the world: $s \equiv (\varepsilon, \varepsilon^*) \in \{(1, 0), (0, 1), (2, 0), (0, 2)\}$, with the probability mass of each state respectively given by $p_s \equiv \{0.3, 0.3, 0.2, 0.2\}$, and intertemporal discount $\delta = 0.1$. The rows of Table 1 report the welfare values of alternative subgame perfect symmetric equilibria. Each row is computed for a different value

\(^{20}\)Note that $\pi_s = \varepsilon_s$ and $\pi^*_s = \varepsilon^*_s$ is the first best (symmetric) solution of the (Ramsey) planning problem.
Table 1. Sustainable Values Under Different Regimes

<table>
<thead>
<tr>
<th>α</th>
<th>INMP</th>
<th>MU w. enf.</th>
<th>MU w.o. enf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-0.23</td>
<td>-0.12</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>Not Sustainable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-3.71</td>
<td>-2.00</td>
<td>-0.70</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-14.85</td>
<td>-8.00</td>
<td>-2.89</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>-0.27</td>
<td></td>
</tr>
</tbody>
</table>

Note: * This column reports the value of the best symmetric equilibrium of the externality α (first column). Greater values of this parameter imply that the externality problem is more relevant, as is reflected in the worsening of the Nash equilibrium value (third column). Note that the discount factor was chosen to be sufficiently low so that the first best could not be sustained by reputation.

The first row shows that when the externality problem is not too large (small α), the value of the best sustainable reputational equilibrium (-0.05) is very close to the value of the first best (zero). Moreover, the best INMP dominates the value delivered by an exogenously enforced monetary union. This parametrization thus supports the case for independent national monetary policy.

As the externality problem becomes more serious, welfare under the monetary union eventually dominates the value of the best reputational equilibrium. The second row of Table 1 illustrates this possibility. The welfare achieved by the countries that enter the MU arrangement is superior to the welfare they would achieve under the best sustainable equilibrium under an INMP regime. Naturally, the lack of enforcement makes the voluntary MU slightly worse than the MU with enforcement. When α is very large participation is not a problem and the outcomes of a voluntary MU coincide with those of an MU with enforcement (third row).

The welfare frontier of the MU with and without enforcement for the case in which $\alpha = 2$ are shown in Figure 1. Under the chosen parameterization, no portion of the efficient frontier is sustainable, as indicated by the fact that the frontier of the voluntary MU lies below the efficient one. This indicates that participation constraints bind, at least in some states. The importance of the reputational mechanism is illustrated by the fact that welfare for Home and Foreign improves
substantially, under both the INMP and the MU regimes, in comparison to the static Nash equilibrium. Moreover, note that the set of values which is sustainable under the monetary union Pareto dominates the corresponding values attained with the INMP. This point, as we mentioned in the comment of Table 1, provides a rationale for a monetary union even when better-than-Nash outcomes can be sustained by means of reputation under independent national monetary policies.

The computation also shows that, for all the parametrizations considered in the Table, the value of the MU with breakups is dominated (the frontier of an MU with breakups lies below the voluntary MU frontier).

Figure 1: Efficient and constrained-efficient welfare frontiers under the MU

5.4. The MU with Breakups

Finally, we consider the case for a temporary MU. We modify the setup by increasing the asymmetry of the shocks in states s_3 and s_4, i.e. $s \equiv (\varepsilon, \varepsilon^*) \in \{(1,0), (0,1), (3,0), (0,3)\}$, leaving all other parameters unchanged.
Figure 2 (for the case in which \(\alpha = 2\)) shows that this modification does not affect the value achieved by the INMP regime (which can take care of asymmetries efficiently). Instead, the value of the MU with enforcement decreases sharply (from -0.27 to -0.52). The MU with breakups, which involves a permanent reversion to the best sustainable INMP if either \(s_3\) or \(s_4\) are hit, dominates the outcomes of both the INMP and the MU with enforcement regimes.

6. Concluding remarks

History offers several examples of countries participating in international agreements that constrain unilateral policy actions, such as exchange rate interventions, therefore removing one adjustment mechanism otherwise available to policy makers. This paper explored the motives behind a country’s choice to voluntarily adopt such a constraint, as it occurs in a monetary union.

We model the MU as a technology which precludes policy surprises (e.g. an unexpected exchange rate realignment) at the cost of foregoing a policy instrument. It is shown that this technology may dominate a coordinated system with
independent national currencies, hence providing a rationale for the formation of an MU.

Departing from the previous literature on international monetary arrangements we abandon the assumption that countries are exogenously bound to the monetary union and explicitly model their incentives to remain within the union or to leave it. This leads to two novel results.

First, while optimal policy when participation is exogenously assumed obeys a time-invariant weighted average of both countries’ preferred policies, optimal policy in a “voluntary” MU responds to a country’s incentive to abandon the union by tilting current and future policy in its favor.\(^{21}\) This enriches policy dynamics significantly and may provide insights into the workings of decision making within supra-national institutions, such as the European central bank, where “national interests” are compounded in the choice of the common policy. Our result suggests that policy, besides depending on MU “average” economic conditions, should occasionally respond to the conditions of the member country for whom adherence to the common policy is costly. This is consistent with the findings of Heinemann and Hüfner (2002) who report descriptive and econometric evidence that national divergence from euro area averages matters for the decisions of the ECB Governing Council.

The second new result is that our model may deliver a break-up of the union along the equilibrium path. Given the second best nature of the policy choices available in the MU, this result stems from the fact that, even when the union is desirable ex-ante, there may be some states of the world in which a country’s incentive to abandon the common policy and its future benefits are irresistible ex-post. The paper shows that the introduction of this new feature, which at first appears as a potentially serious complication of the problem considered, does not impair the tractability of the problem. This result is important because, as mentioned in the introduction, history provides us with examples of supra-national monetary arrangements, including currency unions, that eventually broke apart.

\(^{21}\) Hence, optimal policy is history dependent in this setting and only in the long run, for some special cases, we can replicate the result, obtained when participation is exogenously assumed, that policy obeys a time-invariant weighted average of both countries’ preferred policy (see Proposition 8).
(see Cohen, 1993). Our framework provides a first formal analysis of a country’s incentives to voluntarily participate in a monetary union.

The distinguishing aspect of what we called a “union” is that, while the agents belong to it, they must choose the same action. Therefore, even though belonging to the union might be preferred in expectations, the lack of flexibility introduced by this constraint introduces ex-post incentives to leave the union. In some instances, a compromise regarding the common action to be taken will be reached but in others the union will be dissolved. While we focussed in this paper on monetary policy (and occasionally mentioned exchange rate policy), the key features of our analysis also appear in other settings where coordination on a single action matters, such as fiscal policies in a MU (consider e.g. the choice of the excessive deficit in the Stability and Growth Pact), political parties in a coalition or firms in a joint venture. Our results may find fruitful application in those fields. We leave this task for future research.
A. Appendix: Proofs

Proof of Proposition 1: This result follows from Proposition 1 of Abreu (1988). He establishes, in more generality, that an equilibrium is sustainable (subgame perfect) if and only if, for every history, the payoff corresponding to the best current deviation plus the value from the worst sustainable continuation equilibrium is lower than the value of following the proposed equilibrium strategies.

Proof of Lemma 1:
(i) \(\Gamma \) is compact since it is a closed subset of \(P \times P \) which is compact. Convexity follows from the concavity of \(U(\cdot) \) and the continuity of the choice sets.
(ii) \(W \) is bounded since the per period utility is bounded and \(\delta \in (0,1) \). To prove compactness we therefore only need to prove that it is closed. Consider a sequence of discounted utility vectors \((w_n, w^*_n) \) that converges to \((w, w^*) \). For each \(n \), let \((\Pi_n, \Pi^*_n) \) be the policies associated with these payoffs. Since \(\Gamma \) is compact, there is a convergent subsequence \((\Pi_{n_k}, \Pi^*_{n_k}) \), let \((\Pi, \Pi^*) \) denote its limit. The subsequence \((w_{n_k}, w^*_{n_k}) \) must also converge to \((w, w^*) \). By the continuity of \(U \) over policies the payoff from \((\Pi, \Pi^*) \) is given by \((w, w^*)\), hence by definition it is an element of \(W \).

Proof of Lemma 2:
(i) First let us denote by \(\Xi \) the set of all possible policy plans \((D, \Pi, \beta)\) for the MU. The set \(\Xi \) is compact since it is the product of compact sets. \(\Sigma \) is compact since it is a closed subset of \(\Xi \). Convexity follows from the concavity of \(U(\cdot) \) and continuity in the choice sets.\(^{22}\)
(ii) \(V \) is bounded since the per period utility is bounded and \(\delta \in (0,1) \). To prove compactness we therefore only need to prove that it is closed. Consider a sequence of discounted utility vectors \((v_n, v^*_n)\) that converges to \((v, v^*)\) for each \(n \), let \((D_n, \Pi_n, \beta_n)\) be the policies associated with these payoffs. Since \(\Sigma \) is compact there is a convergent subsequence \((D_{n_k}, \Pi_{n_k}, \beta_{n_k})\), let \((D, \Pi, \beta)\) denote its limit. The subsequence \((v_{n_k}, v^*_{n_k})\) must also converge to \((v, v^*)\). By the continuity of \(U \) over policies, the payoff from \((D, \Pi, \beta)\) is given by \((v, v^*)\), hence by definition it is an element of \(V \).

Proof of Proposition 2:
Suppose that the constraint was not binding. This implies that there is at

\(^{22}\)The fact that we have the public randomization device \(x_t \) was not needed for the convexity of \(\Gamma \) but it is for \(\Sigma \) since this allows us to convexify the decision with respect to break-ups.
least one state where the participation constraint is slack:

$$U^*(\pi_\tau, \pi_\tau, s_\tau) + \delta E_\tau \left[\sum_{i=1}^{\infty} \delta^{i-1} U^*(\pi^*_\tau+i, \pi^*_\tau+i, s^*_\tau+i) \right] > w^*[\beta(h_\tau, D_\tau, a_\tau, a^*_\tau)]$$

Now let $\bar{\pi}_\tau$ denote the optimal level of inflation that Home would choose if it could unilaterally set π for both countries. First note that if $\pi_\tau \neq \bar{\pi}_\tau$, the value to Home can be increased by bringing policy closer to $\bar{\pi}_\tau$, hence decreasing the value to Foreign until the constraint binds.

If $\pi_\tau = \bar{\pi}_\tau$ and $q^* > v^*$, future policy can be tilted towards Home’s preferred policy until Foreign’s promised utility (q^*) becomes v_{min}.

The proof is completed by noting that it is not possible to have $q^* > v^* \geq v_{\text{min}}$ and that for all s_τ for which $U(\bar{\pi}_\tau, \bar{\pi}_\tau, s_\tau) + \delta v_{\text{max}} > w^*[\beta(h_\tau, D_\tau, a_\tau, a^*_\tau)]$ the following holds:

$$U^*(\bar{\pi}_\tau, \bar{\pi}_\tau, s_\tau) + \delta v_{\text{min}} > w^*[\beta(h_\tau, D_\tau, a_\tau, a^*_\tau)]$$

By definition v_{max} is the upper bound of V. Since the proposed policy and continuation values $(\bar{\pi}, v_{\text{max}})$ cannot be improved upon, they must deliver v_{max}. By the definition of v_{min}, this implies that $q^* = v_{\text{min}}$, which delivers the contradiction.

Proof of Proposition 3:

Given Proposition 2, Lemma 3 and our sequential formulation of the problem this result follows from the results by APS(1990).

B. Appendix: Two cases with Separability

In this section we present two examples where *separability* holds.

Repeated Static Nash after break-ups. If we considered the special case in which no matter if the break-up was recommended or unilateral then the countries continuation value is given by the repeated static Nash Equilibrium, $\beta_t : S \times D \times a \times a^* \rightarrow (w^N_s, w^N_{s^*})$. Then we have separability.

Proposition 5. If $\beta_t : S \times D \times a \times a^* \rightarrow (w^N_s, w^N_{s^*})$, the optimal set of states $H \subseteq S$ where the union is sustained is independent of the promised value $v_o^* \in [v_{\text{min}}, v_{\text{max}}]$.

23 This example is extensively analyzed in the working paper version. See Fuchs Lippi (2004).
Proposition 5 allows the problem to be divided in two sub-problems. The first one consists in finding the optimal set H over which the union can be sustained. The second is to determine the optimal policy and continuation values (π_s, v^*_s) given this set.

Quasilinear Preferences and Transfers. If we assumed that the countries had quasi-linear preferences and we allowed for transfers then the Pareto frontiers of the sets would be linear with a slope of -1. This implies that either $V_s \subset W_s$ or $W_s \subset V_s$. Therefore, there will be no Fragile states. For this case, the characterization of the optimal policy is even simpler since optimal policy will simply maximize the joint surplus and then transfers will be used to satisfy the participation constraints. If countries stay in the MU then π will be chosen such that $\frac{U}{U^*} = -1$. Furthermore, promised values need not change since it can be done in the current period by using monetary transfers instead.

C. Appendix: Worst and best equilibria in the INMP game

The worst sustainable value of the INMP game, \underline{w}, solves the following problem:

$$\underline{w} \equiv \min_{\pi_s, \pi^*_s, w^*_s} \sum_s [U(\pi_s, \pi^*_s, s) + \delta W(w^*_s)] p_s \quad (C.1)$$

subject to:

$$U^*(\pi^*_s, \pi_s, s) + \delta w^*_s \geq U^*(\pi^*_d, \pi_s, s) + \delta \underline{w} \quad \forall s$$

$$U(\pi_s, \pi^*_s, s) + \delta W(w^*_s) \geq U(\pi^*_d, \pi^*_s, s) + \delta \underline{w} \quad \forall s$$

$$(W(w^*_s), w^*_s) \in W$$

where W is the set of sustainable payoffs, $W(w^*_s)$ is the maximum value attainable by Home conditional on the promised value w^*_s to Foreign and $\pi^d (\pi^{*d})$ denotes the optimal deviation from the policy plan for Home (Foreign).

A deviation from the strategy prescribed by the “worst equilibrium” is punished with the future reversion to the same equilibrium (Abreu, 1988). As is known, such punishments can be harsher than the reversion to the static Nash equilibrium and thus allow a “good” equilibrium to be sustained. The best (sym-
metric) sustainable equilibrium satisfies:

\[
\bar{w} \equiv \max_{\pi_s, \pi_s^*} \Sigma_s \left[U(\pi_s, \pi_s^*, s) + \delta \bar{w} \right] p_s \tag{C.2}
\]

subject to:

\[
\begin{align*}
U^*(\pi_s^*, \pi_s, s) + \delta \bar{w} & \geq U^*(\pi_s^{sd}, \pi_s, s) + \delta \bar{w} \quad \forall s \\
U(\pi_s, \pi_s^*, s) + \delta \bar{w} & \geq U(\pi_s^d, \pi_s^*, s) + \delta \bar{w} \quad \forall s \\
\bar{w} & = \Sigma_s \left[U^*(\pi_s^*, \pi_s, s) + \delta \bar{w} \right] p_s
\end{align*}
\]

where the last constraint imposes the symmetry requirement. The “best” equilibrium is “self rewarding”, i.e. adherence to the prescribed strategy is rewarded with the continuation of the same strategy next period.
References

